\begin{tabbing} $\forall$\=$X$:Type\{j\}, $x_{1}$:es\_realizer\{i:l\}, ${\it none}$:$X$, ${\it plus}$:(\=es\_realizer\{i:l\}$\rightarrow$es\_realizer\{i:l\}$\rightarrow$$X$$\rightarrow$$X$$\rightarrow$\+\+ \\[0ex]$X$), \-\\[0ex]${\it init}$:(Id$\rightarrow$($T$:Type\{i\}$\rightarrow$Id$\rightarrow$($T$ + (rationals$\rightarrow$$T$))$\rightarrow$$X$)), \\[0ex]${\it frame}$:(Id$\rightarrow$Type\{i\}$\rightarrow$Id$\rightarrow$(Knd List)$\rightarrow$$X$), ${\it sframe}$:(IdLnk$\rightarrow$Id$\rightarrow$(Knd List)$\rightarrow$$X$), \\[0ex]${\it effect}$:(Id$\rightarrow$(\=${\it ds}$:fpf(Id; $x$.Type\{i\})$\rightarrow$Knd$\rightarrow$\+ \\[0ex](\=$T$:Type\{i\}$\rightarrow$$x$:Id$\rightarrow$(\=(decl{-}state(${\it ds}$)$\rightarrow$$T$$\rightarrow$decl{-}type\=\{i:l\}\+\+\+ \\[0ex](${\it ds}$; $x$)) + (decl{-}state(${\it ds}$)$\rightarrow$ \-\\[0ex]$T$$\rightarrow$rationals$\rightarrow$decl{-}type\=\{i:l\}\+ \\[0ex](${\it ds}$; $x$))) \-\-\\[0ex]$\rightarrow$$X$))), \-\-\\[0ex]${\it sends}$:(\=${\it ds}$:fpf(Id; $x$.Type\{i\})$\rightarrow$Knd$\rightarrow$\+ \\[0ex]($T$:Type\{i\}$\rightarrow$IdLnk$\rightarrow$(\=${\it dt}$:fpf(Id; $x$.Type\{i\})$\rightarrow$\+ \\[0ex](\=(${\it tg}$:Id\+ \\[0ex]$\times$ (decl{-}state(${\it ds}$)$\rightarrow$$T$$\rightarrow$(decl{-}type\=\{i:l\}\+ \\[0ex](${\it dt}$; ${\it tg}$) List))) List) \-\-\\[0ex]$\rightarrow$$X$))), \-\-\\[0ex]${\it pre}$:(Id$\rightarrow$(${\it ds}$:fpf(Id; $x$.Type\{i\})$\rightarrow$Id$\rightarrow$finite{-}prob{-}space$\rightarrow$(decl{-}state(${\it ds}$)$\rightarrow\mathbb{B}$)$\rightarrow$$X$)), \\[0ex]${\it aframe}$:(Id$\rightarrow$Knd$\rightarrow$(Id List)$\rightarrow$$X$), ${\it bframe}$:(Id$\rightarrow$Knd$\rightarrow$(IdLnk List)$\rightarrow$$X$), \\[0ex]${\it rframe}$:(Id$\rightarrow$Id$\rightarrow$(Knd List)$\rightarrow$$X$). \-\\[0ex]es\_realizer\_ind(\=$x_{1}$;\+ \\[0ex]${\it none}$; \\[0ex]${\it left}$,${\it right}$,${\it rec}_{1}$,${\it rec}_{2}$.${\it plus}$(${\it left}$,${\it right}$,${\it rec}_{1}$,${\it rec}_{2}$); \\[0ex]${\it loc}$,$T$,$x$,$v$.${\it init}$(${\it loc}$,$T$,$x$,$v$); \\[0ex]${\it loc}$,$T$,$x$,$L$.${\it frame}$(${\it loc}$,$T$,$x$,$L$); \\[0ex]${\it lnk}$,${\it tag}$,$L$.${\it sframe}$(${\it lnk}$,${\it tag}$,$L$); \\[0ex]${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$.${\it effect}$(${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$); \\[0ex]${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$.${\it sends}$(${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$); \\[0ex]${\it loc}$,${\it ds}$,$a$,$p$,$P$.${\it pre}$(${\it loc}$,${\it ds}$,$a$,$p$,$P$); \\[0ex]${\it loc}$,$k$,$L$.${\it aframe}$(${\it loc}$,$k$,$L$); \\[0ex]${\it loc}$,$k$,$L$.${\it bframe}$(${\it loc}$,$k$,$L$); \\[0ex]${\it loc}$,$x$,$L$.${\it rframe}$(${\it loc}$,$x$,$L$)) \-\\[0ex]$\in$ $X$ \end{tabbing}